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Dihydrofolate reductase (DHFR) from bacteriophage T4 is a

homodimer consisting of 193-residue subunits. It has been crystal-

lized in the presence of the cofactor (NADPH) and an inhibitor

(aminopterin) at 296 K using sodium chloride as precipitant. The

crystals are tetragonal, belonging to the space group P4122 (or

P4322), with unit-cell parameters a = b = 61.14, c = 123.23 AÊ under

cryogenic conditions. The asymmetric unit contains a single subunit,

with a corresponding Vm of 2.65 AÊ 3 Daÿ1 and a solvent content of

53.6%. Native data have been collected from a crystal to 1.9 AÊ

resolution using synchrotron X-rays.
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1. Introduction

Dihydrofolate reductase (DHFR; E.C. 1.5.1.3)

catalyzes the reduction of 7,8-dihydrofolate

(DHF) to 5,6,7,8-tetrahydrofolate (THF) using

NADPH as a cofactor. DHF is the product of

thymidylate synthase and must be recycled to

the metabolic pool of THF. After reduction of

DHF, THF receives one carbon unit and acts as

a one-carbon donor in the biosynthesis of

purines/pyrimidines and in the interconversion

of amino acids. Because DHFR is required to

complete the cycle, blockade of the reduction

of DHF to THF leads to cell death (Roth, 1986;

Schweitzer et al., 1990; Polshakov et al., 1999).

Hence, DHFR has long been recognized as a

drug target for inhibiting DNA synthesis in

rapidly proliferating cells such as cancer cells

(Huennekens, 1994) or bacterial or malarial

infections (Roth & Stammers, 1992). Three-

dimensional structures of DHFRs from

Escherichia coli, Lactobacillus casei, Leish-

mania major, Pneumocystis carinii, Candida

albicans, chicken, mouse and human have been

characterized (Sawaya & Kraut, 1997 and

references therein).

DHFR from bacteriophage T4 is a homo-

dimer of 193-residue subunits (Mr 21 713 � 2).

The structure of T4 DHFR is of interest for

several reasons. Firstly, it is a component of a

multienzyme complex for deoxyribonucleoside

triphosphate (dNTP) synthesis in which at least

eight T4 phage-coded enzymes and two

enzymes of host origin are found (Wheeler et

al., 1996). Secondly, T4 DHFR is distinctive in

being a homodimer whereas most other

DHFRs are monomeric (Mosher et al., 1977;

Purohit et al., 1981). Thirdly, its sequence

identity to other DHFRs is very low (below

�25%), particularly toward the carboxyl

terminus. The number of identical residues is

43, 46, 43 and 42 with E. coli, L. casei, chicken

and human DHFRs, respectively. The iden-

tities are clustered in the amino-terminal resi-

dues that participate in binding the cofactor

and the substrate or inhibitors (Purohit &

Mathews, 1984). Therefore, structural deter-

mination of T4 DHFR has been initiated in this

study. It has been successfully overexpressed in

E. coli, puri®ed and crystallized. In this paper,

the crystallization conditions and preliminary

X-ray data are reported.

2. Experimental

2.1. Protein expression and purification

The T4 frd gene coding for dihydrofolate

reductase (DHFR) was inserted into NdeI/

XhoI-digested pET22b under the control of

the T7 promotor. Transformation was

performed by the modi®ed Hanahan method

(Hanahan, 1983), using E. coli strain

C41(DE3) (Miroux & Walker, 1996) for over-

expression. C41(DE3)/pET22b-frd cells were

grown at 310 K in LB medium containing

100 mg mlÿ1 ampicillin. When cultures reached

an OD600 of 0.6±0.7, isopropyl-�-d-thio-

galactopyranoside (IPTG) was added to a

concentration of 0.5 mM to induce expression

of the T4 frd gene. Cultures were grown for an

additional �4 h after IPTG induction. The

cells were then harvested by centrifugation at

6 000 rev minÿ1 (Hanil Supra 21K rotor) for

10 min at 281 K. The cell pellet was suspended

in 15 volumes of ice-cold lysis buffer (50 mM

Tris pH 7.5, 0.1 mM EDTA) and then homo-

genized by sonication. The crude lysate was

centrifuged at 18 000 rev minÿ1 (Hanil Supra

21K rotor) for 30 min at 281 K and the super-

natant fraction was collected. The expression

level of T4 DHFR was very high (�50% of
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total proteins) and most of it (�90%) was in

the soluble fraction. The supernatant frac-

tion was brought to 35% saturation with

solid ammonium sulfate and left for about

2 h at 281 K. The slurry was centrifuged at

18 000 rev minÿ1 (Hanil Supra 21K rotor)

for 30 min at 281 K and the precipitate was

collected. The pellet was then dissolved in

buffer A (50 mM Tris pH 7.5, 0.1 mM

EDTA, 200 mM NaCl) and dialyzed over-

night against 100 volumes of the same

buffer. T4 DHFR was puri®ed by three

chromatographic steps on an ion-exchange

column (Q-Sepharose HiLoad 26/10, Phar-

macia), an NADPH af®nity column (Red-

Sepharose CL-6B, Pharmacia) and a gel-

®ltration column (Superdex-75 HiLoad

16/60, Pharmacia). The puri®ed T4 DHFR

was homogeneous (�99%) as judged by

polyacrylamide-gel electrophoresis in the

presence of 0.1%(w/v) sodium dodecyl

sulfate. This procedure yielded approxi-

mately 60 mg per litre of culture. The

puri®ed T4 DHFR was concentrated by

ultra®ltration with a YM10 membrane

(Amicon). The protein concentration was

estimated by measuring the absorbance at

280 nm using the calculated extinction

coef®cient of 1.317 ml mgÿ1 cmÿ1.

2.2. Crystallization

Crystallization was performed by the

hanging-drop vapour-diffusion method at

296 K using 24-well tissue-culture plates

(Hampton Research). Each hanging drop

was prepared on a siliconized cover slip by

mixing equal volumes (2±3 ml) of the protein

solution and the reservoir solution [100 mM

Tris±HCl pH 8.1, 2.8 M NaCl and 120 mM

(NH4)2HPO4]. The protein solution, at a

concentration of 6.5 mg mlÿ1 and containing

the cofactor (NADPH) and an inhibitor

(aminopterin) in a tenfold molar excess, was

incubated for 1 h on ice before mixing with

the reservoir solution.

2.3. Data collection

For the ®rst set of native X-ray diffraction

data, a crystal was mounted in a thin-walled

glass capillary and the capillary was sealed

with wax after ®lling both ends with mother

liquor. X-ray experiments were carried out

using Cu K� X-rays from a rotating-anode

generator with double-mirror focusing

optics (Rigaku RU-200BH) running at

50 kV and 50 mA. A set of X-ray diffraction

data was collected at 293 K on a MacScience

DIP2030 image-plate area-detector system.

The data were processed and scaled using

the programs DENZO and SCALEPACK

(Otwinowski & Minor, 1997).

The second set of native X-ray diffraction

data was collected using the modi®ed Weis-

senberg camera for macromolecular crys-

tallography at the BL-6A experimental

station of the Photon Factory, Tsukuba,

Japan (Sakabe et al., 1997). Before ¯ash-

freezing the crystal in the nitrogen-gas

stream at 100 K, it was dipped for a few

seconds into a solution containing 20%(v/v)

glycerol in addition to the reservoir solution.

The wavelength of synchrotron X-rays was

1.000 AÊ and a 0.1 mm collimator was used.

One image plate (20 � 40 cm, Fuji BASIII)

was placed at a distance of 429.7 mm from

the crystal. The oscillation range per frame

was 4.5�, with a speed of 1.0� sÿ1 and a

coupling constant of 1.0� mmÿ1. An overlap

of 0.5� was allowed between contiguous

frames. The number of oscillations per frame

was between 12 and 15. The diffraction

patterns recorded on the image plates were

digitized with an off-line scanner

(BAS2000). The raw data were processed

and scaled using the programs DENZO and

SCALEPACK (Otwinowski & Minor,

1997). The space group was determined by

examining the systematic absences of the

X-ray diffraction intensity data.

3. Results

Well diffracting crystals of T4 DHFR were

obtained at 296 K when the reservoir solu-

tion contained 100 mM Tris, 2.8 M NaCl and

120 mM (NH4)2HPO4 at a ®nal pH of 8.2.

These crystals grew to approximate dimen-

sions of 0.2 � 0.2 � 0.6 mm within a week

(Fig. 1). The crystals diffracted to 2.1 AÊ

resolution with Cu K� X-rays from a

rotating-anode source and were very stable

in the X-ray beam. They are therefore

suitable for structure determination at high

resolution. The ®rst set of diffraction data

was collected from a native crystal at 293 K

using Cu K� radiation. A total of 104 888

re¯ections were measured, which were

merged to 12 530 unique re¯ections with an

Rmerge (on intensity) of 6.3%. The merged

data set is 96.9% complete to 2.20 AÊ reso-

lution, with the shell completeness between

2.24 and 2.20 AÊ being 94.3%. The systematic

absences indicated that the crystals belong

to the tetragonal space group P4122 (or

P4322), with unit-cell parameters

a = b = 62.00 (3), c = 125.76 (8) AÊ .

With synchrotron X-rays, the crystals

diffracted to 1.7 AÊ resolution and a second

set of native data extending to 1.9 AÊ reso-

lution were collected at 100 K. A total of

76 830 re¯ections were measured, which

were merged to 17 645 unique re¯ections

with an Rmerge (on intensity) of 10.7%. The

merged data set is 90.6% complete to 1.9 AÊ ,

with the shell completeness between 1.93

and 1.90 AÊ being 81.2%. Table 1 summarizes

the statistics of the data collection. The

asymmetric unit contains half a homodimer,

giving a crystal volume per protein mass

(Vm) of 2.65 AÊ 3 Daÿ1 and a solvent content

of 53.6%. These values are within the

frequently observed ranges for protein

crystals (Matthews, 1968). Since molecular

replacement was not successful, a search for

heavy-atom derivatives in order to solve the

structure by the multiple isomorphous

replacement method is in progress.

Figure 1
A tetragonal crystal of dihydrofolate reductase from
bacteriophage T4. The approximate dimensions of
the crystal are 0.2 � 0.2 � 0.6 mm.

Table 1
Data-collection statistics.

Native I Native II

X-ray wavelength (AÊ ) 1.5418 (Cu K�) 1.000 (BL-6A)
Temperature (K) 293 100
Space group P4122 (or P4322) P4122 (or P4322)
Unit-cell parameters (AÊ ) a = b = 62.00 (3),

c = 125.76 (8)
a = b = 61.14 (12),

c = 123.23 (29)
Resolution range (AÊ ) 20±2.2 50±1.9
No. of measured re¯ections 104888 76830
No. of unique re¯ections 12530 17645
Completeness (%) 96.9 90.6
Rmerge² (%) 6.3 10.7

² Rmerge =
P

h

P
i |I(h)iÿ hI(h)i|/Ph

P
iI(h)i, where I(h) is the intensity of re¯ection h,

P
h is the sum over all re¯ections and

P
i is

the sum over i measurements of re¯ection h.
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